AirHeat. & GeoHeat.

By Enex

POMPE À CHALEUR CO₂

FLUIDE R744 1430 à 2100 fois moins polluant

LA PAC LA PLUS PERFORMANTE DU MARCHÉ

La AirHeat, technologie propre destinée à la production d'eau chaude sanitaire grande capacité, s'adresse aux projets à forte production d'eau chaude (camping, salles de sport, stations services, hôtels, bâtiments collectifs...).

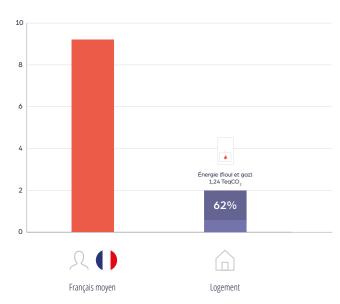
Ces pompes à chaleur peuvent produire de l'eau chaude sanitaire jusqu'à 80°C, en utilisant l'air extérieur comme source.

UNE INTELLIGENCE DE CONCEPTION

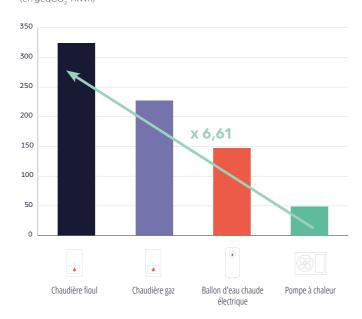
Les pompes à chaleur GeoHeat sont conçues pour produire de l'eau chaude sanitaire jusqu'à 80° C, en utilisant la même eau ou le sol comme ressources. Comme pour les pompes à chaleur AirHeat, leurs principales caractéristiques sont la facilité d'utilisation et l'adoption du CO_2 comme réfrigérant. De plus, il existe trois modèles de capacité, qui peuvent être assemblés en parallèle.

Pour ces raisons, les pompes à chaleur GeoHeat sont une solution valable pour toutes les applications nécessitant de grandes quantités d'eau chaude, telles que les hôtels, cantines, hôpitaux, centres sportifs, blanchisseries et industries agroalimentaires.

Technologie CO,



EMPREINTE CARBONE


Empreinte carbone moyenne d'un français en 2019

Source : Chiffres clés du climat

Le logement et sa production d'énergie représentent un poids carbone important, près de 22% de l'empreinte carbone globale de chacun.

Empreinte carbone de la consommation d'1kWh de chauffage en 2018, selon les types de technologie

Source : les facteurs d'émission de gaz à effet de serre

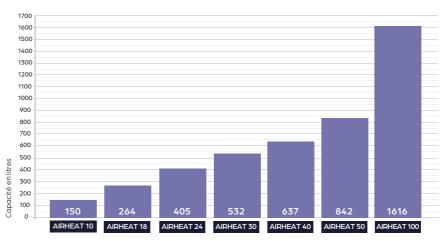
La PAC CO, est l'une des solutions ECS avec le moins d'impact carbone. Elle est 6,61 fois moins polluante qu'une chaudière fioul. Remplacer sa chaudière fioul ou gaz contribue donc grandement à réduire les consommations et l'empreinte carbone globale de chacun.

POURQUOI LA TECHNOLOGIE CO,

Nos pompes à chaleur utilisent le fluide R744 (CO₂), un réfrigérant naturellement présent dans l'air. Contrairement aux autres gaz réfrigérants, il cumule les avantages d'être non inflammable et non toxique.

Elles peuvent assurer la production d'eau chaude de 65°C jusqu'à 80°C pour des applications commerciales et industrielles. Notre gamme AIRHEAT offre sept modèles de capacités différentes permettant une production de 1 500 à plus de 15 000 litres d'ECS par

En variante, la PAC CO, peut fonctionner en mode eau-eau avec notre gamme GEOHEAT. Nous consulter pour la découvrir.



Comparatif sur l'impact des gaz à effet de serre GWP* (équivalent en rejet de CO₂ d'une voiture)

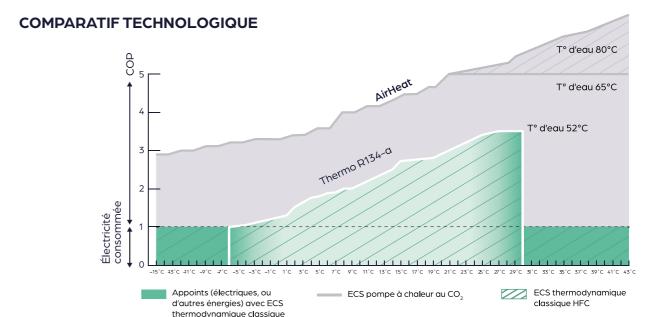
Fluide	Echelle GWP
R410-A	2100
R407-C	1800
R134-A	1430
R32	675
R744 (CO ₂)	1

*Global warming potential


DES PAC PERFORMANTES

AIRHEAT: nombre de litres par heure à (10/65°C à +7°C température extérieure)

Avantages

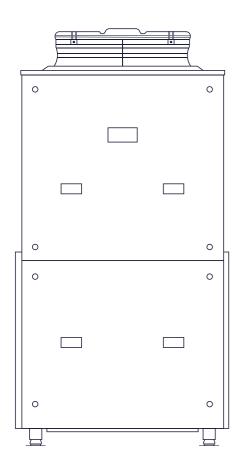

- Destinée à la production d'eau chaude sanitaire grande capacité
- Fluide CO₂ (R744), réfrigérant naturel qui a le plus faible impact sur l'environnement
- Serveur web pour la télésurveillance
- Ventilateur à vitesse variable (sortie verticale)
- · Circulateur ECS basse consommation à vitesse variable intégrée
- Unité plug and play facilité d'installation
- Conception robuste Tuyauterie 100% inox

GEOHEAT : nombre de litres par heure à (10/65°C à 12/+7°C température extérieure)

Avantages

- Pompe à chaleur géothermique pour ECS à grande capacité
- Fluide CO₂ (R744), réfrigérant naturel qui a le plus faible impact sur l'environnement (GWP1)
- Chauffage de l'eau en instantané
- · Circulateur ECS basse consommation intégré
- Facilité d'entretien
- Faible niveau sonore
- · Clavier de réglage intuitif
- Conception robuste Tuyauterie 100% inox

GEOHEAT 48


AIRHEAT - PAC Aérothermique

Solution Écologique

Fonctionnement au fluide ${\rm CO}_{2'}$ très peu polluant par rapport aux autres fluides sur le marché.

Performances Thermiques

- Fonctionnement jusqu'à -15°C extérieur sans appoint électrique
- Production d'eau chaude jusqu'à 80°C
- Fonctionnement jusqu'à +40°C extérieur

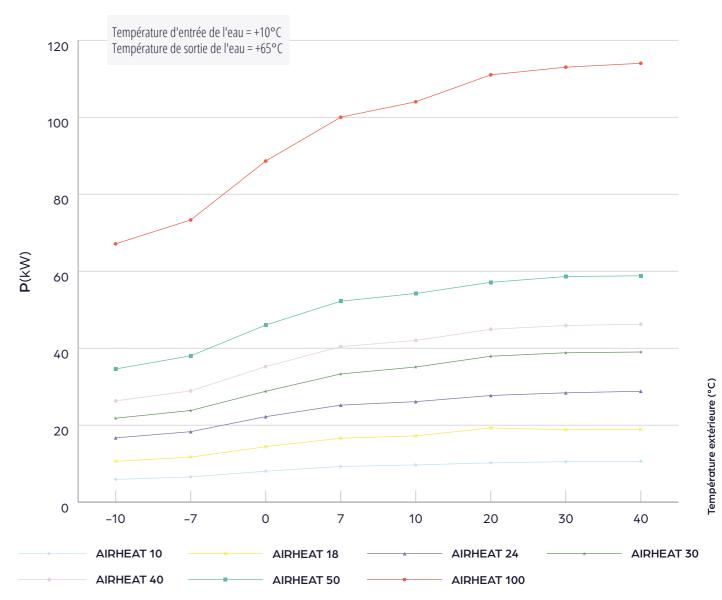
Santé

Production à 65°C dans toutes les conditions climatiques assurant une protection anti-légionellose permanente.

Économies d'Énergie


65% d'économie grâce à l'un des COP le plus élevé du marché.

Idéale pour les consommations importantes!



ECS disponible dès le démarrage de la PAC

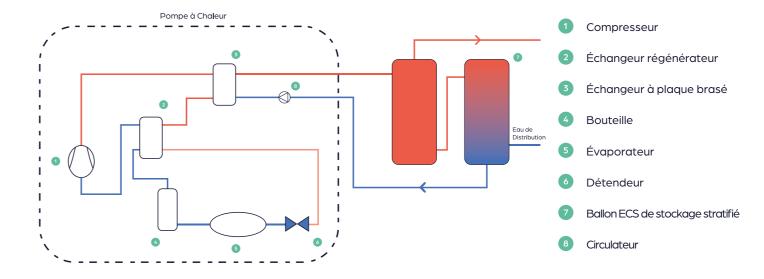
VOTRE GUIDE DE RÉFÉRENCES

PERFORMANCES AIRHEAT

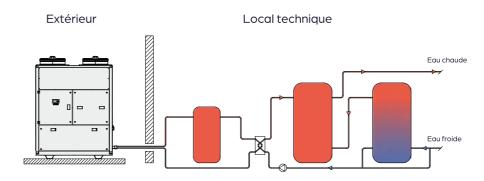
NOS RÉFÉRENCES

Références	Désignations
AIRHEAT-010-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 - 10 kW
AIRHEAT-018-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 - 18 kW
AIRHEAT-024-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 - 24 kW
AIRHEAT-030-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 - 30 kW
AIRHEAT-040-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 - 40 kW
AIRHEAT-050-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 - 50 kW
AIRHEAT-100-2.0	Pompe à chaleur R744 (CO2) pour production d'ECS- AIRHEAT 2.0 -100 kW

${\bf POMPE\ \grave{A}\ CHALEUR\ ECS\ CO_{_2}-AIRHEAT}$


VOS DONNÉES TECHNIQUES

Modèles		Taille 10	Taille 18	Taille 24	Taille 30	Taille 40	Taille 50	Taille 100		
© Caractéristiques technic	ques*					•		•		
Capacité nominale kW		9,46	16,9	25,9	34,1	40,8	54	104		
COP 10/65°C - ambiant 7°C		3,43	3,71	3,63	3,67	3,74	3,51	3,81		
Production L/h (10/65°C à 7°C)		150	264	405	532	637	842	1 616		
Alimentation électrique		400 V / 50 Hz / 3P + N								
Puissance électrique consommée max en kW		4,13	6,7	12,5	14,9	16,1	23	38,8		
Intensité max		8,5	11,5	24	27,5	27,5	39,5	66		
Pression d'eau max					7 bars					
Diamètre entre-sortie eau		1/2" - 1/2"	1" - 1"	1 1/4" - 1 1/4"	1 1/4" - 1 1/4"	1 1/2" - 1 1/2"	1 ½" - 1 ½"	2" - 2"		
Charge réfrigérant en kg		3,8	4,3	6,4	6,7	8,6	9,6	20		
	Largeur	1 100	1 150	1 550	1 550	2 380	3 040	3 040		
Dimensions en mm	Profondeur	900	920	920	920	970	1 290	1 290		
	Hauteur	2 000	2 000	2 000	2 000	2 100	2 500	2 500		
Poids en kg		360	400	550	550	750	750	1 500		


Derformances

ambiant	T° entrée/sortie								
	11000/15500	COP	2,08	2,22	2,46	2,64	2,17	2,12	2,53
	+10°C/+55°C	P(kW)	5,9	10,6	16,7	21,8	26,3	34,7	67,1
-10°C	+10°C/+65°C	COP	2,09	2,22	2,45	2,64	2,17	2,11	2,53
	+10 (/+03 (P(kW)	5,91	10,6	16,7	21,8	26,3	34,6	67,1
	+10°C/+75°C	COP	1,95	2,08	2,28	2,45	2,13	1,98	2,36
	+10 C/+/3 C	P(kW)	5,79	10,4	16,7	21,8	26,4	34,7	67,7
	+10°C/+55°C	COP	3,66	3,06	3,21	3,35	2,93	2,88	3,34
	+10 C/+33 C	P(kW)	8,01	14,5	22,4	29,1	35,2	46,3	88,9
0°C	+10°C/+65°C	COP	2,67	3,04	3,18	3,31	2,93	2,86	3,33
U C	+10 C/+03 C	P(kW)	8,03	14,4	22,2	28,8	35,2	46	88,6
	+10°C/+75°C	COP	2,66	2,82	2,93	3,04	2,81	2,66	3,05
	+10-C/+/5-C	P(kW)	8	14,3	22,4	29,1	34,8	46,5	89,8
	+10°C/+55°C	COP	3,81	4,12	4,04	4,07	3,89	3,86	4,23
		P(kW)	9,56	17	25,7	33,8	40,8	53,3	102
7°C	+10°C/+65°C	COP	3,71	4,03	3,97	4,02	3,85	3,81	4,15
/ (P(kW)	9,27	16,6	25,2	33,3	40,4	52,2	100
	+10°C/+75°C	COP	3,38	3,67	3,6	3,65	3,54	3,47	3,77
		P(kW)	9,34	16,7	25,7	33,9	38,6	53,4	103
	+10°C/+55°C	COP	4,08	4,44	4,31	4,44	4,2	4,23	4,51
	+10 C/+55 C	P(kW)	10	17,9	26,9	36,2	42,8	56,2	107
+10°C	+10°C/+65°C	COP	3,94	4,27	4,19	4,31	4,12	4,08	4,41
+10 C	+10 C/+03 C	P(kW)	9,66	17,2	26,1	35,1	42	54,2	104
	+10°C/+75°C	COP	3,58	3,9	3,8	3,9	3,79	3,69	3,98
	+10 C/+/3 C	P(kW)	9,8	17,5	26,8	35,9	40,2	55,7	107
	+10°C/+55°C	COP	4,5	5,01	4,86	5,14	4,79	4,77	5,13
	TIU C/+33 C	P(kW)	10,9	19,8	29,6	41,1	47,3	61,5	118
+20°C	+10°C/+65°C	COP	4,23	4,63	4,56	4,75	4,55	4,43	4,83
120 C	TIU C/TOO C	P(kW)	10,2	18,3	27,7	37,9	44,9	57,1	111
	+10°C/+75°C	COP	3,83	4,23	4,13	4,32	3,99	4,02	4,36
	+10 C/+/3 C	P(kW)	10,5	18,9	28,9	39,7	41,5	59,9	116

SCHÉMA DE FONCTIONNEMENT

SCHÉMA DE PRINCIPE

Le système se compose d'une ou de plusieurs pompes à chaleur, associées à un volume de stockage d'ECS, volume qui peut être composé d'un ou de plusieurs ballons. Ce volume de stockage est équipé de sondes de température. Un afficheur permet de piloter la régulation du système (température de consigne et consigne horaire).

La régulation du système correspond à l'ajustement de la quantité d'eau chaude stockée à une consigne donnée dans le ou les ballons.

La détermination de la quantité d'eau chaude disponible se fait par l'intermédiaire des sondes de température dans le ou les ballons. La consommation d'ECS est à déterminer en fonction des conditions d'utilisation.

TABLEAU DE MONTÉE EN TEMPÉRATURE (12 / 65°C À +7°C / -7°C)

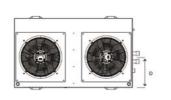
Le dimensionnement des ballons de stockage doit être réalisé en fonction des besoins de l'installation. *Données à titre indicatif, non contractuelles

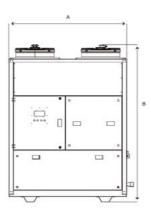
	DBX300	DBX500	DBX750	DBX1000	DBX1500	DBX2000 ou DBX 1000x2	DBX3000 ou DBX 1500x2
AIRHEAT Taille 10	2h21/3h28	3h50/5h39	5h57 / 8h46	7h33 / 11h08	11h11 / 16h30		
AIRHEAT Taille 18	1h20 / 1h57	2h11/3h12	3h23 / 4h57	4h18 / 6h18	6h22/9h20	9h22 / 13h42	
AIRHEAT Taille 24		1h25 / 2h01	2h11/3h08	2h46/3h59	4h07/5h54	6h02/8h40	8h29 / 12h10
AIRHEAT Taille 30		1h04 / 2h06	1h39 / 3h15	2h06/4h08	3h07/6h08	4h34/9h00	6h25 / 12h39
AIRHEAT Taille 40			1h23 / 2h01	1h46 / 2h34	2h37/3h48	3h50/5h35	5h24/7h50
AIRHEAT Taille 50			1h04 / 1h32	1h22 / 1h57	2h01/2h53	2h58 / 4h15	4h10/5h58
AIRHEAT Taille 100							2h08/3h02

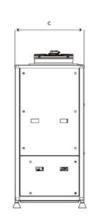
Pour des capacités supérieures ou combinées, nous consulter à servicecommercial@teccontrol.fr

52

${\bf POMPE\ \grave{A}\ CHALEUR\ ECS\ CO}_{_2}-{\bf AIRHEAT}$



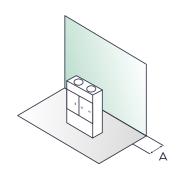


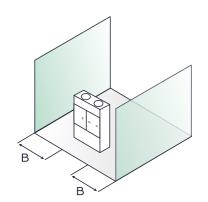

CARACTÉRISTIQUES DIMENSIONNELLES

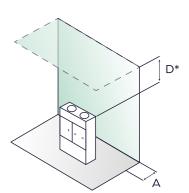
DIMENSIONS DE LA AIRHEAT

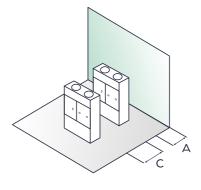
*Voir poids et taille à la partie dimensions AirHeat

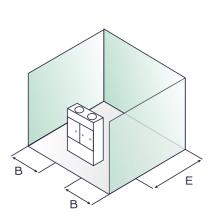
	AH10	AH18	AH24	AH30	AH40	AH50	AH100
А	1100 mm	1150 mm	1550 mm	1550 mm	2380 mm	3040 mm	3040 mm
В	2000 mm	2000 mm	2000 mm	2000 mm	2100 mm	2500 mm	2500 mm
C	900 mm	920 mm	920 mm	920 mm	970 mm	1290 mm	1290 mm
D	200 mm	150 mm	400 mm				
Poids	360 kg	400 kg	550 kg	550 kg	750 kg	750 kg	1 500 kg


CONSEILS DE POSE


En cas de soulevement avec une grue, il faut accrocher les sangles de levage à la base du cadre et non à la partie supérieure.




EMPLACEMENT


DÉGAGEMENT MINIMUM POUR AIRHEAT

	AH10	AH18	AH24	AH30	AH40	AH50	AH100
A	1 m	1 m	1 m	1 m	1 m	1 m	2 m
В	1 m	1 m	1 m	1 m	1 m	1 m	2 m
C	1.5 m	1.5 m	1.5 m	1.5 m	1.5 m	1.5 m	2 m
D*				non conseillé *			
Е	1 m	1 m	1 m	1 m	1.5 m	1.5 m	2 m

^{*} Possibilité de gainer, nous consulter pour étude de faisabilité.

${\bf POMPE\ \grave{A}\ CHALEUR\ ECS\ CO_{_2}-AIRHEAT}$

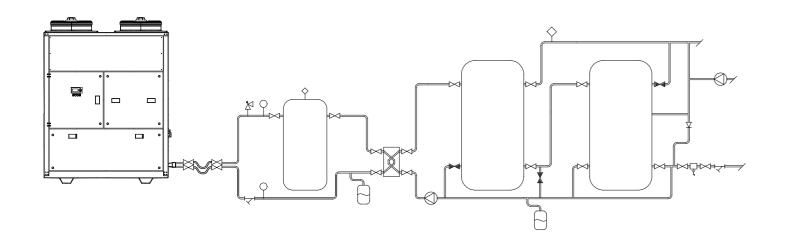
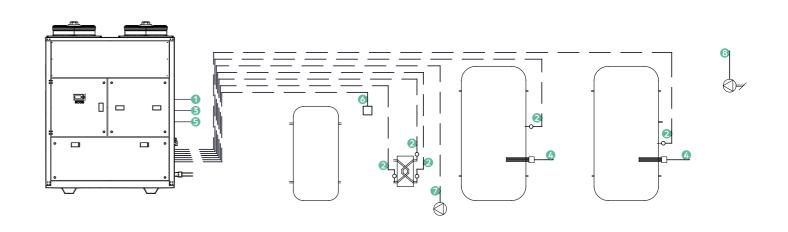


SCHÉMA HYDRAULIQUE



RACCORDEMENT HYDRAULIQUE

	AH10	AH18	AH24	AH30	AH40	AH50	AH100
Raccordement hydraulique	1/2" - 1/2"	1" - 1"	1 1⁄4" - 1 1⁄4"	1 1/4" - 1 1/4"	1 ½" - 1 ½"	1 ½" - 1 ½"	2" - 2"
Ø liaison PAC Ballon	14 mm	18 mm	22 mm	22 mm	28 mm	28 mm	35 mm
Distance *				20 m			
HMT pompe	7 mce	7 mce	8 mce	8 mce	8 mce	8 mce	35 mce

^{*}Comprenant 8 coudes et 8 vannes

SCHÉMA ÉLECTRIQUE

RACCORDEMENT ÉLECTRIQUE

		AH10	AH18	AH24	AH30	AH40	AH50	AH100		
1	Alimentation AirHeat triphasée*	Câble 5G1.5	Câble 5G1.5	Câble 5G2.5	Câble 5G4	Câble 5G4	Câble 5G6	Câble 5G16	À prévoir par l'installateur	
2	Sonde de température		Câble RO2V 1,5 mm fourni							
3	Report de défaut		Câble RO2V 2x1,5 mm²							
4	Alimentation Thermoplongeur		Câble 5Gxx							
5	Connexion réseau		Câble RJ45							
6	Afficheur déporté		Câble RO2V 2x1.5 mm²							
7	Circulateur secondaire		Câble RO2V 2x1.5 mm²							
8	Circulateur bouclage		Câble RO2V 2x1.5 mm²							

^{*}Pour une distance maximum de 60 m, sinon nous consulter

Technologie CO,

SIMULATION RETOUR SUR INVESTISSEMENT

SUR UN PROJET D'HÔTEL DE 30 CHAMBRES

LE PROJET

- Hotel 2*
- Situé à Paris

Perte de bouclage

Estimatif de 15 W/m sur une longueur moyenne de 10 mètres de bouclage par logement.

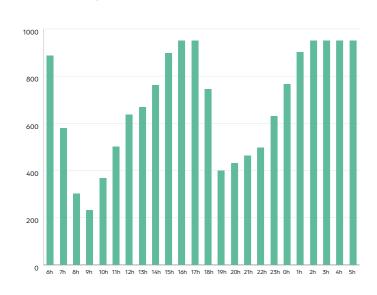
Solution actuelle à remplacer

- 2 ballons d'eau chaude électriques 1 500L chacun
- Consommation moyenne journalière de 2 100L à 60°C

Hypothèse

- 30 chambres*
- 70L / chambre à 60°C

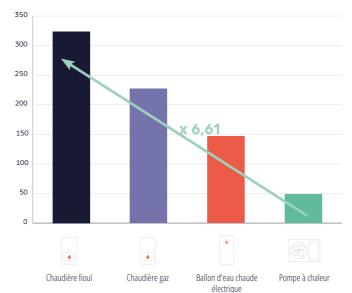
*chambres avec douche


Répartition des consommations

Répartition des consommations sur 3 plages horaires dans la journée :

- Matin (de 5h à 9h): 48% de la consommation
- Midi (de 12h à 14h) : 7% de la consommation
- Soir (de 17h à 22h) : 45% de la consommation

SIMULATION DES CONSOMMATIONS (en L)


volume disponible dans le ballon

COÛT CARBONE DES ÉNERGIES (en geqCO2*/ kWh)

*gramme équivalent ${\rm CO_{_2}}$

SOLUTION 1

Remplacer les chauffe-eau actuels par la solution AirHeat & DBX

Installation:

- 1 PAC AIRHEAT 18 kW
- 2 ballons DBX ST 500L
- 1 résistance de secours 9 kW

Investissement total 30 245€

Coût par chambre 1008€

Consommation énergétique annuelle estimée :

751 m³ / 16 008 kWh

Bouclage
13 140 kWh

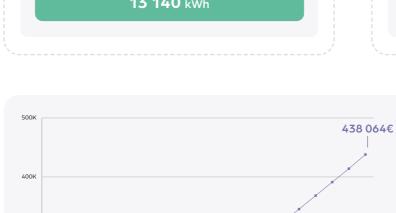
SOLUTION 2

Remplacer les chauffe-eau électriques actuels par la même solution

Installation:

VS

- 2 ballons 1500L
- 2 résistances 9 kW


Investissement total 7 760€


Coût par chambre 259€

Consommation énergétique annuelle estimée :

Production ECS 751 m³ / 48 026 kWh

Bouclage **39 420 kWh**

^{*} Estimation résultant d'une simulation effectuée sur la base d'hypothèses. Elle n'a aucune valeur contractuelle et ne consitue pas un engagement de TECCONTROLSE. (1) Abonnement annuel 537,48€ - Prix kWh TTC € Heures Pleines 0,27 € - Prix kWh TTC € Heures Creuses 0,2068 €